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Abstract 
 
Structures that are members of an ensemble of nominally 
identical systems actually differ due to variations in details 
among individuals.  Furthermore, there are variations in the 
system response of an individual structure that can be 
attributed to unmeasured conditions (such as temperature 
and humidity) that are present during experiments.   Finally, 
noise is present in all measurements of structural excitations 
and responses.  For these reasons, there is always random 
variation associated with the characterizations of structural 
dynamic systems, and descriptions of results must be in 
statistical or probabilistic terms.  This study identifies and 
assesses the sources and the degrees of randomness in a 
metric of structural dynamics of a given system through 
experiments and analysis.  
 
Nomenclature  
 
h = an n x 1 vector random source of Impulse Response                       

Practically all physical structures are subjected to dynamic 
environments.  The dynamic response of some structures 
governs their design and therefore, characterizing the 
dynamic behavior of structures is important.  However, the 
dynamic characteristics of physical structures that are 
nominally identical exhibit random variation (see Paez, 
Hunter, and Cafeo, 2002 [5], [6]).  Specifically, 
manufacturing processes that seek to produce identical 
systems fail to do so because the equipment used to 
fabricate parts and the procedures used to construct 
components and systems are imperfect.  The small 
variations in hardware and fabrication procedures yield 
systems with differing vibration characteristics.   

      Function realizations 
hi = an IRF realization of vector random source h           
q = structural excitation 
v
v
_
  = sample mean of a collection of vectors in v 
 = an n x 1 real valued vector   

  v  = magnitude of vector v 
x  =  structural response 

H = structural frequency response function 

P = normalized inner product between vectors v1 and v2 

V = n x 1 vector of random variables 

δ = distance between normalized vectors v1 and v2 

2δ = mean square estimator of a random variable 
φ  = angle between vectors v1 and v2 
θ  = Fourier transform of the structural excitation 

σ
^

δ  = root mean square (RMS) estimator of a random  
      variable 

 σ
^

∆  = RMS distance of vectors in V from their  
           mean vector 

 ξ  = Fourier transform of the structural response 

 ∆ = random variable of which δi, i= 1,…,M, are realizations 
 
1.  Introduction 
 

 
Even if physical systems could be constructed identically, 
their behaviors would display random variation due to the 
influence of randomly varying boundary and initial 
conditions.  Material temperature also influences structural 
behavior and is not normally taken into account in dynamic 
analysis or the interpretation of measured response data.   
Finally, the transducers used to measure system behavior 
are always noisy.  Therefore, the excitations and responses 
used to infer system characteristics are only approximations. 
All these sources of variability result in structural 
randomness.   
 
This paper attempts to quantify variation in a metric of 
structural response associated with nominally identical 



structures.  Traditional vibration analysis techniques are 
used to estimate structural impulse response functions (IRF), 
which will be used to assess randomness in structural 
response.  The methods of statistics are used to quantify 
structural variations by estimating a metric of differences 
between IRFs.  Several different sources of variability 
associated with the structural response of a system are 
examined.  A simple frame structure is used to demonstrate 
the techniques developed in this study. A combined 
experimental and numerical example is presented. 
 
2. Experimental Structural Dynamics 
 
Every physical structure subjected to dynamic loads realizes 
a response that depends on the magnitude and type of input 
to the structure as well as the characteristics of the structure.  
In this study, we sought to assess the variation of 
experimental structures in terms of their impulse response 
functions (IRF).  Therefore, we required a means for 
estimating this function given the excitation and response. 
  
A linear framework was assumed for modeling the behavior 
of the system of interest. Further, the system characteristics 
were assumed to be stable over the short time when a 
sequence of excitations was applied in immediate 
succession.  Finally, the measured excitation and response 
of the experimental system were assumed to be available.  
The (i)th measurement of a scalar excitation is denoted as 
qi(t), i=1,…,M, t 0.  The response excited by this input is 
denoted as x

≥
i(t), i=1,…,M, t  0.  The Fourier Transforms of 

these signals are denoted as, θ
≥

i(f), , and ξ∞<<−∞ f i(f), 
, respectively.  The relation between excitation 

and response is defined as 
∞<<−∞ f
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where H(f) is the system frequency response function (FRF). 
 
To estimate the FRF, a standard procedure was used (see 
for example Wirshing, Paez, and Ortiz, 1995 [7] , or Bendat 
and Piersol, 1986 [2]),  where both sides of Eq. (1) are 
multiplied by the complex conjugate of θi(f), and then the 
results are summed and the FRF is factored out: 
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Then we solved for the FRF as follows: 
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The estimation formula used here minimizes the effects of 
transducer noise. 
 
In practice, we do not have measurements of the excitation 
and response in continuous time.  Rather, both excitation 

and response are sampled and denoted, respectively, as qj,i, 
xj,i, j=0,…,n-1, i=1,…M, where measurements were made at 
time tj=j∆t, j=0,…,n-1.  A discrete frequency approximation of 
the FRF was established by evaluating Eq (3) at discrete 
frequencies fk=k∆f, k=0,…,n/2, ∆f=1/(n∆t). 
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This expression for the FRF yields the fundamental measure 
of linear system behavior. 
 
The IRF can then be obtained from the FRF via inverse 
Discrete Fourier Transform: 
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where the values of Hk for k=n/2,…,n-1, are the conjugate 
symmetric pairs of the values in k=1,…,n/2. 
 
3. Statistical Analysis 
 
The objective in this analysis was to assess the degree of 
system random variation that results from structural 
differences. This goal was accomplished using the system 
impulse response function (IRF) as the critical measure of 
structural behavior.  Simple statistical methods such as the 
mean and root mean square (RMS) were employed to 
evaluate system random variation. The quantities needed to 
compare IRFs are not simple scalars; therefore, the vector 
quantities needed to be adapted to simple statistical metrics. 
  
The estimates of mean square and RMS of a random 
variable can be obtained with the following formulas,  
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=

δ⋅=δ
n
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2
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n
1                       (6) 

and 

  2δ=σδ
∧

         (7) 
 
respectively, where the δi, i=1,...,n, are data from the random 
source.  These formulas are unbiased and consistent (see 
Ang & Tang, 1975 [1] or Benjamin & Cornell, 1970 [3]). 
  
To accommodate these simple statistical estimation formulas 
using IRF data, a measure of “distance” between 
neighboring system IRF vectors was defined based on a 
normalized inner product  (see Moon & Wynn, pp. 101-103 
[4] for an inner product space description of the discussion to 
follow).  If v1 and v2 are a pair of real-valued n x 1 vectors, 
the normalized inner product (P) between v1 and v2 is 
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where v  denotes the norm of the vector V.  Specifically 
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where the (i)th element in vector v is vi.  Because of the 
normalization, this inner product is always in the interval       
[-1,1].  The angle, φ, between the vectors v1 and v2 is 
defined as the inverse cosine of the normalized inner 
product (P). 
 

)P(cos 1−=φ            (10) 
 
In the following computations, φ will always be taken as the 
positive-valued angle whose cosine is P.  A normalized 
distance between the vectors v1 and v2 can now be defined 
as 

  






 φ⋅=δ
2

sin2        (11) 

 
Because of the angle definitions, this quantity will always be 
nonnegative. 
 
This framework for comparison of vectors permits the 
characterization of variation among a collection of random 
vectors.  From the random vector V, vi, i=1,…,M, is a 
sequence of real-valued n x 1 vectors.  (V is an n x 1 vector 
of random variables).  The sample mean of this collection is 
defined as 
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The statistical variation of the collection of vectors vi, 
i=1,…,M, from the mean is now described.  The distance of 
the normalized (i)th vector from the normalized mean is 
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The δi, i=1,…,M, are realizations of a random variable ∆.  
This quantity is the distance of a vector v to the sample 
mean.  All the δi’s are nonnegative, though the vectors 
occupy arbitrary locations in n-space.  Therefore, a metric of 
the spread of vector locations in terms of the RMS is defined 
as 
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This is an estimate of the RMS distance of vectors in V from 
their mean vector. 
 
Example:  if  V is a 3 x 1 vector random source defined as 
 

            V=        (16) 
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where the Zi, i=1,2,3, are uncorrelated standard normal 
random variables, a sequence of random vectors vi, 
i=1,…,10, from the random source could be generated.  The 
sample mean can also be calculated.  The vector 
realizations and sample mean are shown in Figure 1.  
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Figure 1: Ten realizations of a vector random source and 
their mean, where the mean is represented in red. 
 
Figure 2 shows the normalized form of one of the vector 
realizations and the normalized sample mean (shown in 
Figure 1) in the plane created by the two vectors.  The angle 
φ between the two vectors is shown, along with the distance 
between them. 

 
Figure 2: Distance between a realization vector and the 
sample mean vector 
 



Figure 3 shows the end points of the 10 random vectors 
projected onto a plane perpendicular to the end of the mean 
vector.  The distances δi, i=1,…,10, are approximately the 
distances shown in Figure 3. 

δ =2sin( φ /2) 

 δ 1 

δ 
2 

i i 

  
Figure 3:  Distance from individual vectors to the sample 
mean vector.         End of example 
  
The framework of Eqs. (8) through (15) are now used to 
assess the variability of IRFs.    Specifically, h is defined as 
an n x 1 vector random source of IRF realizations denoted 
as hi, i=1,…,M.  The n-dimensional vectors, hi, i=1,…,M, are 
comparable to the three-dimensional vectors vi, i=1,…,M, 
defined above.  The RMS deviation of the vectors in h from 
their mean is estimated using the framework defined in the 
example.  This quantity is a metric of system variability. 
 
The example computations shown are in three dimensions 
for visualization purposes, however, measured IRFs are n-
dimensional.    Nevertheless, the definitions established in 
this section are still applicable.  
 
4. Test Setup 
 
The objective of this investigation was to assess sources of 
variation in structural systems. Experiments on a real 
structure were chosen to accomplish this goal.  For the sake 
of simplicity, the simple structure, shown in Figure 4, was 
chosen.  The structure consists of a four-member aluminum 
frame bolted together using four steel ninety-degree angle 
brackets.   The top member is 0.00635-m thick, 0.0508-m 
wide, and 0.5588-m long.   The vertical members are 
0.00635-m thick, 0.0508-m wide, and 0.3048-m long.  The 
bottom member is 0.0127-m thick, 0.1524-m wide, and 
0.6096-m long; the intent was that the bottom member 
simulates a rigid base.  The steel angle brackets are 
0.00635-m thick and 0.0508-m wide; the legs of the angles 
are 0.0635-m long.  The entire structure was then centered 
on a piece of foam, 0.0254-m thick, 0.17145-m wide, and 
0.2794-m long.  The foam acted to create an approximately 
free-free boundary condition and to isolate the structure from 
the table on which it rested.  By using this setup, the effects 
of the table on the characteristics measured in the test, were 
minimized.  Each of the six larger bolts joining the three 
upper members were tightened to 54 N-m.  The remaining 
connections were made with eight smaller screws.  (These 
eight screws were not removed during any of the tests.) 
 

 
Figure 4:  Sample test structure 
 
Because the objective of one part of this investigation was to 
assess variations among nominally identical structures, six 
nominally identical top members and five nominally identical 
vertical members were fabricated.  In the various 
experiments, random structures were created by selecting 
top and vertical members at random and using them to 
fabricate a structure like the one shown in Figure 4. 
  
The data acquisition system used to collect the dynamic 
motion data was a four-channel Dactron Photon system, 
which was configured to measure four signals 
simultaneously at a sampling rate of 1280 samples per 
second.   The system was excited using a PCB medium 
sized impact hammer with a rubber cap on a nylon tip.  This 
means of excitation gave approximately five-decibels of roll-
off for the 0 to 500 Hz range of interest with a peak impact 
level of roughly 155 N.  All impacts were applied at the upper 
right corner of the structure.  Three PCB 352C22 teardrop-
style accelerometers were mounted on a small aluminum 
block, which was affixed to the upper left corner of the 
structure to measure responses in the three principle axes.  
The excitation and response locations were established 
using a modal analysis of the structure to find the locations 
which yielded responses with a high signal to noise ratio.    
 
4.1 Experimental Procedure 
 
This study considered five experiments each of which 
examines a different cumulative level of structural variation.  
In each experiment, five replicate tests were performed, with 
each test consisting of ten runs.  A run was a set of five 
impacts and response measurements that were averaged to 
obtain a frequency response function (FRF). Each FRF was 
transformed into an IRF.  The ten runs included in each test 
were used to estimate the RMS variation of IRFs from their 
sample mean using the approach and metric described in 
the previous section.  Each of the five replicate tests sought 
to estimate the RMS value of a particular random source.    
 
4.2 Summary of Experiments 
 
The goal of each experiment was to assess variation in 
estimated IRFs caused by an accumulation of effects.  The 
experiments are described below along with their associated 



random variation sources.  Each test in experiments one 
through four was performed on a single structure assembled 
from random elements. The tests in experiment five were 
performed on different random structures for each run. 
 
1.  Rapid Succession Experiment  – The runs of each test in 
this experiment were taken without pause in order to 
minimize the effects due to environmental changes.  
(Precautions were taken to insure the system was as 
consistent as possible.  For example, the accelerometers 
were not moved during this experiment.) (Duration ~ 10 
minutes) 
       Sources of variability are: 

o Accelerometer noise 
o Changes in structural joints and  elements during 

response 
o Level and location of excitation 

2.  Accelerometer Removal/Replacement Experiment – The 
accelerometers were removed and placed in nominally the 
same location and orientation between each run of this 
experiment. (Duration ~ 10 minutes) 
       Sources of variability are: 

o Accelerometer placement 
o All variation associated with experiment 1 

3.  Extended Observation Experiment – Each test in this 
experiment was run over several hours.  (Duration ~ 2.5 
hours) 
       Sources of variability are: 

o Environmental changes (temperature, humidity) 
over duration of test 

o All variation associated with experiment 1 
4.  Assembly/Disassembly Experiment  – Each test in this 
experiment used the same structural elements in the same 
orientation but after each run the structure was 
disassembled and reassembled in the same orientation.  
(Duration ~ 1.5 hours) 
       Sources of variability are: 

o Changes in boundary conditions, i.e. resetting of 
mating joint surfaces and joint configuration 

o All variation associated with experiments 1, 2,    
and 3 

5.  Random Structure Experiment – Each run used a 
different random structure determined using a MATLAB 
code.  The assembly and disassembly procedures were the 
same as the assembly/disassembly experiment. 
       Sources of variability are: 

o Actual random changes in structural geometry 
o Changes in material properties  
o Changes in joint configuration (greater than 

experiment 4) 
o All variation associated with experiments 1, 2, 3, 

and 4 
 
5. Data Analysis 
 
All data analyses described below were performed using 
MATLAB, (Version 6.1.0.450, Release 12.1).  First, 
equations outlined in the Structural Dynamics section were 
used to estimate the system IRFs for each run, (where a run 
is an average of five impacts).  The system IRFs were 
estimated by applying the inverse DFT to the system FRFs.  
In addition, the estimated IRFs were further modified through 
filtering.  Specifically, the IRFs were bandpass filtered over 
the interval (35,75) Hz using a fourth order Butterworth filter 

in order to isolate structural motion in the first flexural mode 
of response. Figure 5 shows a typical structural FRF, while 
Figure 6 shows the corresponding filtered IRF. 

 
Figure 5: Unfiltered FRF of a sample random structure 

 
 
Figure 6: Filtered IRF of a sample random structure 

Ten runs were performed for each test.  The sample mean 
was calculated for each test as well as the RMS variation in 
IRFs in the manner established in section 3. Statistical 
Analysis.  Five tests were completed for each experiment.     
 
6. Results 
 
A sequence of five experiments, described in the test setup 
section, was performed.  Each experiment consisted of five 
tests.  Each result presented below is an estimate of RMS 
structural variation.  We anticipated that structural variation 
should be minimal in the Rapid Succession experiment and 
maximal in the Random Structures experiment.  The results 
are presented in Figure 7, which is a logarithmic plot of RMS 
estimates associated with the five experiments.  The results 
are ordered along the abscissa of the plot according to the 
indexing scheme established in the section 4.2 Summary of 
Experiments.   
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Figure 7:  RMS values for variation corresponding to each 
experiment where an estimated RMS value for variation 
corresponding to a single test is shown by an open circle.  A 
solid circle shows the sample RMS of the collection of 
individual RMS estimates.  A solid line shows the span from 
the lowest to the greatest RMS estimate. 
 
The variation was anticipated to increase from experiment 1 
through 5 due to the cumulative effect of the variation 
introduced to the system.  Whether environmental variation 
would have a larger effect on the system than accelerometer 
location and orientation was unclear; therefore, the relative 
magnitude of variations experienced during the 
Accelerometer Removal/Replacement and Extended 
Observation experiments was difficult to predict. 
 
The data presented, in Figure 7, show that each of the first 
three experiments exhibit low variation associated with the 
conditions listed in the test summary.  The Rapid Succession 
experiment exhibits a greater amount of variation than the 
other two experiments performed without rebuilding the 
structures.  This trend in the data could be explained by a 
relatively small number of tests, too small to effectively 
measure the variances associated with each experiment.  An 
important result to note is that the fourth and fifth 
experiments, in which the structure was disassembled and 
reassembled, produce an increase, of almost an order of 
magnitude, in estimated RMS variation.  This result shows 
the high degree of variation associated with changing 
boundary conditions and structural components. 
 
7.   Conclusions 
 
A simple frame structure was studied to develop a means of 
estimating variability in structural response.  In this study, we 
found that structural characteristics and their estimates 
varied randomly due to various effects.  The measurement 
system introduced variability in the form of transducer noise, 
level and location of excitation, and accelerometer 
placement.  Further, environmental variation (e.g., 
temperature and humidity changes), introduce variability to 
the system.  This study also found that disassembly and 
reassembly of a structure can introduce changes in 
constraints and boundary conditions, which correspond to 
variation in the system response.  This variation is especially 
prevalent in structures with bolted joints.  Lastly, this study 
found that nominally identical structures vary in geometry 
and material properties, resulting in variation of response 
from one randomly assembled structure to another. 

We were able to establish a measure of random variation in 
structures applicable to any structure.  By performing 
experiments on a simple structure, we were able to verify the 
applicability of this measure.  These experiments allowed us 
to evaluate the effects of various sources of variation and 
gauge the degree of structural response variation associated 
with the accumulation of these sources of uncertainty. 
 
Motivation for further work in this area can be found in many 
industries.  In the age of mass production of complex 
structures, the ability to quantify the variation in structural 
response of a collection of nominally identical structures is 
important.  This study can be used to quantify the variation in 
structural response.  Further work could be done in analysis 
of the structure using finite elements to identify the 
parameter(s) that correspond to the variation in structural 
response.  Incorporating varying parameters in an analysis 
can prove to be valuable in predicting a range of structural 
response for a collection of structures. 
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